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The laminar horseshoe vortex flow at a strut-wall intersection is numerically simulated by 
direct solution of the 3-dimensional incompressible time-dependent Navier-Stokes equations 
using multi-domain spectral methods. Flow dependence in the direction normal to the wall is 
represented by direct expansion in Chebyshev polynomials, thus yielding good resolution of 
the viscous layer at the endwall. However, spatial discretization of flow dependence on the 
plane parallel to the endwall is done via spectral element method. Such implementation offers 
the advantages of high-order accuracy, minimal dispersion errors, a degree of geometrical 
flexibility, and parallelism. The horseshoe vertical flow is characterized by 3-dimensionality, 
unsteadiness, and a Reynolds number that is large but having viscous effects which are critical 
to the flow evolution. Time evolution is implemented using a fractional time-stepping techni- 
que. Results at low and moderate Reynolds numbers will be presented to demonstrate the 
application of the method. In these computations, a simple extrapolation outflow boundary 
condition is used. Difficulty associated with the imposition of the outflow boundary condi- 
tions, especially in the endwall flow region near the outflow boundary, is discussed. e 1989 
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1. INTRODUCTION 

Although some of the flows encountered in engineering situations can be usefully 
described by inviscid analyses, there are very often situations in which the viscous 
effects must be accounted for, even at the most basic level of description. Many of 
these flows occur in geometries that are inherently 3-dimensional in nature, such as 
the horseshoe vortex flow at the junction of a strut-wall intersection. The horseshoe 
vertical flow is characterized by 3-dimensionality, unsteadiness, and a Reynolds 
number that is “large” but having viscous effects which are critical to the flow 
evolution. Such flows exist in many situations. For example, horseshoe vortex flow 
occurs near the junction of an airplane wing with the fuselage [l] and the junction 
of plate and support in a plate heat exchanger. Another example is present in axial 
turbomachinery [S] where boundary layers which develop on the annular surfaces 
of the axial flow passage encounter rows of stationary and rotating blades. The 
horseshoe vertical flow is of engineering interest because it can lead to flow 
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degradation, high wall shear stresses, high local heat transfer rate and its role as the 
origin of corner flows. Numerous flow visualization studies C-41 have shown that 
the horseshoe vortex flow consists of a 3-dimensional boundary layer separation 
in front of the strut followed by a vortex flow which wraps around the strut. 
Depending on the Reynolds numbers, there could be more than one horseshoe 
vortex present, and for a particular flow conliguration, there is a critical Reynolds 
number at which the horseshoe vertical system can become unsteady. 

Because of the engineering importance of horseshoe vortex flows and the scarcity 
of available detailed quantitative flow measurements, many computational methods 
[S] have been developed for computing and predicting such a flow field. These 
computational efforts are based purely on the classical finite difference approxima- 
tions. In the present paper, we describe the computation and prediction of laminar 
horseshoe vortex flow at moderate Reynolds number by a multi-domain spectral 
method. Our goal is to arrive at a reliable simulation code that we can use to gain 
an improved understanding of the vortex flow and the associated corner flows. We 
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FIG. 1. Coordinate system, nomenclature, and computational domain: (a) Y-Z symmetric plane; 
(b) semi-infinite strut with circular leading edge; (c) elliptical strut. 



132 C. S. TAN 

also have as our aim to develop and demonstrate the feasibility of the spectral 
method as a research tool to study and predict fairly complex flow situations of 
engineering interest. While the heat transfer phenomena is an important facet 
associated with the horseshoe vortex flow [6] (e.g., in high performance axial 
turbines), we will not address it in the present paper. 

2. FLOW CONFIGURATION SETUP 

We shall consider the horseshoe vortex flow to be created by the interaction of 
a laminar boundary layer on a flat surface and a semi-infinite strut or a finite strut 
of constant thickness spanned between two parallel flat surfaces. The leading edge 
of the strut is taken to be circular or elliptical (this is not a restriction). The flow 
contiguration setup is as shown in Fig. 1. The use of the semi-infinite strut assump- 
tion essentially eliminates the wake flow region downstream of a finite strut since 
our primary interest lies in the detailed flow development in the leading edge 
region. The fact that the strut truncates on the flat surface instead of in the open 
flow domain facilitates the imposition of the boundary conditions. The flow 
configuration setup described above is akin to a wind tunnel experiment except that 
it is done on a computer. 

In the following, we will present the development and design of a multi-domain 
spectral method for the computation of such a fairly complex flow field. 

3. THE GOVERNING EQUATIONS AND TIME DIFFERENCING SCHEME 

The dynamical equations governing the flow are the incompressible 
Navier-Stokes equations written in rotational form: 

l3V ~=vx”-vP,+~v’v (1) 

v.v=o. (2) 

Here, V is the velocity field normalized by the velocity U, at the center line in the 
inlet plane, o = V x V the vorticity field, and P, = P + 4 1 VI2 the total pressure nor- 
malized by pUf, ; P and p are the static pressure and the density of the fluid, respec- 
tively. Re is the Reynolds number based on U, and half the height of the strut. All 
lengths are normalized by half the strut height so that Re = U,/v (where v is the 
kinematic viscosity). Equation (1) is the momentum equation while Eq. (2) imposes 
the continuity constraint on the velocity field. In addition to Eqs. (1) and (2), we 
require the no-slip boundary condition 

v=o (3) 
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on the strut surface and endwalls. In addition, as Fig. 1 implies, we will choose the 
computational domain to be a region in the vicinity of the strut that is embedded 
within a larger overall flow system; consequently we would have to consider 
“appropriate inflow and outflow boundary conditions” which can adequately model 
the interface between the computational domain and the remaining flow system. For 
the flow system considered here, we specify the velocity at the inflow plane so that 
it consists of a thin shear layer modelling the incoming boundary layer on the flat 
endwall surfaces and an essentially inviscid core region (see Fig. 1). At the outflow 
plane, we impose the simple extrapolation outflow boundary condition on V; this 
is tantamount to saying that the flow does not evolve further in the streamwise 
direction and hence it constitutes an approximation which one hopes will not 
contaminate the interior solution. 

Given the initial conditions for V at t = 0, we choose to advance Eqs. (1) and (2) 
forward in time using the fractional time-stepping scheme that consists of a non- 
linear convective step, a pressure correction step, and a viscous correction step [7]. 
The nonlinear convective step is implemented through the use of an explicit third- 
order Adams-Bashforth scheme [ 151 that yields 

V ^‘+I-V’=$ 23(Vxo)“-16(Vx0)“-~+5(Vxo)“-~ , 1 
where the superscript n denotes time level while At denotes the chosen time step 
size. The third-order Adams-Bashforth scheme is chosen for its relatively large 
stability region near the imaginary axis [S]. It should be noted that, with the 
exception of the inflow boundary conditions, no other boundary conditions are 
imposed in this step. 

Once the V”+ ’ is determined, we are then left with an unsteady Stokes problem 
which is split in time as follows. First there is the pressure correction step that 
consists of 

5 n+l --(tn.1 

At 
= -VP,, 

v.~n+Q), 

(44 

(4b) 

and 

0 n+l. t, = 0 (4c) 

on the strut surface and endwalls. Technically, the above can also be reformulated 
as a solution for P, from 

V n+l 

VP,=V. 7 ( > (5a) 
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subjected to the appropriate inflow/outflow boundary condition (B.C.) and 

ap,-w .c, 
an- At (5b) 

on the solid walls. In Eqs. (4~) and (5b), 6, denot_es the outward normal unit vector 
on the strut and endwalls. The velocity field ?“+l that satisfies the continuity 
condition is then computed from Eq. (4a). 

Following the pressure step is the viscous correction step that imposes the 
appropriate no-slip boundary conditions on the strut/endwalls and the inflow/out- 
flow boundary conditions on V”+ I. This step is discretized in time using the 
implicit Crank-Nicholson scheme giving 

V n+l- 
-V, at the inflow boundary (6b) 

V n+l=o at solid wall surface. (6~) 

The outflow B.C. imposed is of the simple extrapolation type given here as 

av n+l 

- = 0. ay (6d) 

Difficulty associated with the imposition of outflow boundary conditions will be 
discussed further in the section on numerical results. 

The above scheme uses the improper inviscid boundary condition on the 
pressure; it is thus (at least for model problems [9]) of O(At) accurate in the 
velocity in the interior of the domain, with larger errors occurring in the pressure 
and velocity gradients in a boundary layer of thickness O(Ar/Re)1/2 near the walls 
[9]. It should be pointed out that Marcus [lo] showed that the boundary errors 
do produce serious inaccuracies in Taylor-Couette flow; he ascribed this to the fact 
that the dynamics of the Taylor-Couette flow are driven by the motion of the 
boundary rather than by a mean pressure gradient. As the flow here is driven by 
the pressure gradient, it can be argued that, at least at moderately high Reynolds 
number (where At/Re is typically small), the above time splitting scheme can 
achieve comparable accuracy to the higher order methods, with considerably less 
work and complexity. 
We note here that the most expensive numerical operation in stepping the equa- 
tions forward in time is in inverting the V* operator for the fairly complex geometry 
encountered in the horseshoe vertical flow situation. In fact, the inversion must be 
done four times per time step: once for evaluating the pressure field (Eq. (5a)) and 
once for each component of the velocity in the viscous fractional step. In the next 
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section we shall describe a spatial discretization scheme based on the multi-domain 
spectral method that permits the direct and efficient inversion of the V* operator for 
the fairly complex geometry encountered here. 

4. SPATIAL DISCRETIZATION 

4.1. Coordinate System 
To facilitate the description of spatial discretization used here, we define the 

following coordinate systems: 

(a) The global coordinate system (X, Y, Z). The governing equations, all the 
discrete differential operators (divergence, curl, gradient, and Laplacian), and the 
velocity vector 

v = V,&,+ v,t,+ V,&, 

will be written in terms of the global coordinate system. In Eq. (7), (6,, gy, gz) are 
the unit vectors and the subscripts (X, Y, Z) denote the vector components in the 
respective directions. In (X, Y, Z) systems, the endwalls are at Z = + 1 and the 
inflow/outflow boundaries are at the constant Y planes. The computational domain 
is bounded by two constant X planes on either side of the strut (see Fig. lb). 
Periodicity of the flow variables is imposed at these constant X planes but not at 
the inflow/outflow planes. Because of this, the flow field is equivalent to that for a 
cascade of struts of constant pitch in the X direction. 

(b) The local coordinate system. This is designed to be a surface-oriented 
coordinate system. The computational region on the X-Y plane is subdivided into 
an appropriate number of domains to allow for geometrical and resolution 
flexibility on the X-Y plane. For subdomains in the vicinity of the circular leading 
edge of the strut, the appropriate surface-oriented coordinate system to use is the 
cylindrical coordinate system (r, 6, Z), while away from the leading edge one would 
preferably choose to use the rectilinear coordinate system (x, y, Z). If an elliptical 
leading edge is used, one may choose the elliptical coordinate system so as to be 
surface oriented. 

(c) The natural coordinate system (5, q, 0. As in the case of (b), this coor- 
dinate system is local to each subdomain but it is so defined that the boundaries 
of the subdomain are at t= fl, q= +l, and c= fl. 

4.2. Spatial Discretization in Z 

It has been shown by Orszag [ 111 that for wall-bounded viscous flows, the 
no-slip wall boundary condition can be satisfied by using the Chebyshev poly- 
nomials as basic expansion functions. Expansions based on these polynomials are 
highly accurate and have a rate of convergence which depends only on the smooth- 
ness of the solution within the domain. Thus, it is natural to represent the flow 
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dependence in the 2 direction by expansion in Chebyshev polynomials. This would 
also yield high resolution of the boundary layers and viscous layers at the endwalls 
which are essential facets of the horseshoe vortex flow. However, to incorporate the 
appropriate boundary conditions (Dirichlet for the velocity in the viscous correc- 
tion step and Neumann for the pressure correction step) into the expansion, we 
define an eigenfunction expansion 

to satisfy the Sturm-Liouville problem, 

d*f’M - = A: F,(Z), 
dZ* (9) 

where for pressure it is determined to satisfy the homogeneous Neumann boundary 
condition (since aP/i?Z= 0 at Z= + 1 from Eq. (5b)) while for velocity V, it is 
determined to satisfy the homogeneous Dirichlet boundary condition (since V = 0 
at Z = + 1). These eigenfunctions can readily be constructed using either the tau 
method or the collocation method [12]. Reference may be made to [ 121 for the 
detailed procedure for constructing such eigenfunctions, including the situation of 
nonhomogeneous boundary conditions. The Chebyshev polynomials T,(Z) can be 
expressed as T,,,(Z) = cos(m cos-1 Z) and we choose the Chebyshev collocation 
points, 

z,=cos; 
to yield good resolution of the flow field at the endwalls. 

Use of the above procedure esentially decouples the Z-dependence in the Poisson 
equation for P, and the Helmholtz equation for V, thus reducing them to a set of 
2-dimensional equations (which can simultaneously be solved on a parallel 
processor, if available). We now proceed to the spatial discretization on the X-Y 
plane. 

4.3. Spatial Discretization on the X-Y Plane 

It is clear from the layout of the flow configuration on the X-Y plane that it 
would be extremely difficult to implement the global spectral discretization of the 
X-Y dependence of the flow variables. Thus we will appeal to the use of a multi- 
domain spectral method [ 13-151 for the spatial discretization on the X-Y plane. In 
particular, we will follow the spectral element discretization technique developed in 
Refs. [9, 151 for this purpose. Thus the chosen computational domain is subdivided 
into an appropriate number (say I) of macro-elements as shown in Fig. 1. For a 
subdomain in the vicinity of the circular leading edge of the strut, the local cylindri- 
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cal coordinate system is used. In each subdomain, we can then expand the flow 
variables as 

where h,(S) are high-order local Lagrangian interpolants in terms of Chebyshev 
polynomials. It can be written as [ 151 

(12) 

with 

cm= 2 i 
1 for m#OorM 

for m=OorM (13) 

and the collocation points S, given in Eq. (10). It follows from the orthogonality 
of the discrete Chebyshev series that 

k(&) = kn”, (14) 

where 6,” is the Kronecker delta function. In Eq. (1 l), the superscript i pertains to 
local subdomain i while the F,(Z) is the appropriate respective eigenfunction for V 
(satisfying the Dirichlet boundary condition) and P, (satisfying the Neumann 
boundary condition). Similarly, the mapping from the physical coordinates 
(X, Y, Z)‘/(r, 8, z)~ to the local natural coordinates (5, r~, i)i is given by an 
isoparametric tensor-product mapping [ 151, 

(X, Y)i= t 5 (X, Y);khj(~)h;(rj) 
j=O k=O 

(15) 

as we have taken Z= [. We further note that the collocation points in each 
subdomain are given by 

(5, q, z,;x, = 
nk 

cos 715, cos -, cos 
J K L (16) 

Desirable resolution of flow variables in the X- Y dependence is achieved by an 
appropriate choice and arrangement of the domain decomposition [15]. 



138 C. S. TAN 

5. THE FINAL DISCRETIZED EQUATIONS 

The various semi-discrete differential operators (discrete in the X-Y dependence 
but continuous in 2) can now be defined in terms of the expansion functions given 
in Eqs. (8), (9), (ll), (12), (15), and (16). They are given in the Appendix. 

5.1. The Nonlinear Convective Step 

Since this step is explicit, it would first involve the evaluation of vorticity o in 
each subdomain according to 

ajk/= k F z F v Yjkpq V/xpyr Tr(z,) 
/kp=o y=o r=o 

- F F z I”& T,(Z,) P, 
p=o q=o r=O 1 

+ “c” z T I’!&, T,.(Z,) 
i p=o y=o r=O 

-  & pgo qf?o .to vWw ‘ZP,, T.(z/)} ‘Y 

+ : 5. F ? Pxjkpy VYpqrTr(Zr) 
Jkp=o c,=o r=o 

- + F 5 F p Yjkpy V~pqrTr(z~)} 6~3 (17) 
/kp=o c,=o r=o 

where VF’,L is evaluated [ 163 according to, for each p and q, 

(18) 

In Eq. (17), Jjk is the Jacobian of the geometrical mapping, while C, in Eq. (18) is 
given as 

c,=2 for r=O 

= 1 for r>O. 

The subscript jkl refers to the collocation points of Eq. (16). The value of the 
vorticity along the inter-element boundaries, say between element a and element b, 
is taken as the weighted average [lS], 

(19) 
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The nonlinear term (V x w) is evaluated by the collocation technique since the 
convolution sums required by the Galerkin formulation are costly to evaluate [ 161. 
Thus, this step amounts to the update of ?TkT1 from 

oyk; l = V;,,+$(23(Vxw);‘,- 16(V~~)~~~‘+5(Vx~)i;;;~). (20) 

Only the inflow boundary condition is imposed at this step. 

5.2. The Pressure Correction Step 

In the solution for the total pressure head P,, we will choose not to discretize 
Eq. (5a) directly [ 151, but rather we first formulate the weighted residual form 
of the continuity condition (Eq. (4b)) over the (X, Y)-dependence (or (5, q)- 
dependence) based on hj(<)hk(q) but keeping the Z-dependence. This leads to a 
semi-discretized continuity condition given as 

jk 

The notation Ci means taking account of all the contributions from all the sub- 
domains (i.e., application of direct stiffness procedure as in the finite element techni- 
que) [17]. The first two terms on the RHS of Eq. (21) refer to the specified incom- 
ing flow while the last two terms refer to the outgoing flow. The semi-weighted 
residual form of Eq. (4a) is 

WC) 

From Eqs. (21) and (22) one can obtain a consistent equation for P, as 
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xi 1 c &d’,(Z) At + c 1 km At 
i- s r s rs 

+ c 1 c Y,&c&mq k,#)6,, 
kms 

(TV 

(23) 

where 

A hrs = - 1 c c c 9pqh Bpqjkvjkrr. 

i k P q 

(24) 

We will choose to determine the pressure P, consistently from Eq. (23). For the 
present problem, we note that the implementation of the inflow/outflow boundary 
condition simply requires the specification of the last four terms on the RHS of 
Eq. (21); in particular, because of the assumed inflow velocity, the second (II) and 
fourth (IV) terms on the RHS of Eq. (23) can be taken to be zero for the 
3-dimensional horseshoe vertical flow situation considered here and the remaining 
two terms (i.e., the third and fifth) are simply the incoming flow and the outgoing 
flow. Therefore, their presence is to modify the sum of the first two terms on the 
RHS at collocation points along the inflow and outflow boundaries in consistence 
with the continuity requirement. Quantities like BjlP, BPqik, and A,/,,, that appear 
in the above equations are given in the Appendix. 

Next, we proceed to use Eq,. (9) to separate out the Z-dependence so that 
Eq. (23) is reduced to a set of 2-dimensional equations given as 

xi T T Ap,(Pt)jk, + nf c 1 hpqjk(pt)jkl = Tpqi’ 
i k 

(25) 

where the subscript I in the above equation refers to the projection of (P,!, in the 
physical space Z to the eigenvector space of F,(Z) via Eq. (8). 
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5.3. The Viscous Correction Step 

We first employ Eq. (9) to separate out the Z-dependence so that Eq. (6) is 
reduced to a set of +Zdimensional equations with (X, Y)-dependence, given as 

a* a* 2 Re 
s+a- dl+l;)(V”+1),=(-~~“+‘-V2”2”),=(a),, (26) 

where the subscript I in Eq. (26) refers to the projection of Vjk in physical space Z 
to the eigenvector space of E;(Z). Note that each of the sets of equations described 
by Eqs. (25) and (26) can be solved independently of one another, thus resulting in 
parallelism of implementation. 

We can now appeal to the equivalence of the differential Eq. (26) with the 
extremization of the functional [ 171 

(27) 

with restriction to admissible variations associated with the essential boundary 
conditions in Eqs. (6b) and (6~). Equation (27) refers to a component of Eq. (26). 
We now use Eq. (11) and the geometric transformation Eq. (15) in the functional 
Eq. (27), perform the resulting integration and seek the stationarity of the 
functional with respect to variation in V$’ [9, 15, 171 to arrive at 

The above discretization technique allows the natural satisfaction of the imposed 
outflow boundary condition (Eq. (6d)), while the inflow boundary condition and 
the no-slip boundary condition on the strut surface are implemented via static 
condensation [ 15, 171. 

However, if a different type of outflow boundary other than the simple extrapola- 
tion kind (e.g., the advective type of outflow boundary condition) is used, the 
functional I should be appropriately modified to reflect its use. 

5. NUMERICAL AND COMPUTATIONAL IMPLEMENTATION 

The sequential steps which are performed for a complete computational cycle are 
presented below. 

( 1) Preprocessing Stage 

The following quantities are computed once for all in the preprocessing phase of 
the computation: 
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(a) The eigenvalues Ir, the eigenvectors, and their inverses associated with 
the diagonalization of the Chebyshev-tau approximation to az/&Z2, one set for the 
pressure step with homogeneous Neumann boundary condition and another for the 
viscous step with homogeneous Dirichiet boundary condition at Z = + 1. 

(b) The matrices Y,Qs~~~my~p~x~ xrNyyDrjfij[pJyNy, Yd.sk&,,y~pl, 
XrlDqBjlp6,1, ij/z/rn, AI,,,, vj/cpyT BpqlkQrs, and opy,,,&dk. 

(c) The matrices corresponding to the solution of Eqs. (25) and (28) by the 
static condensation method [17] (there is one set corresponding to each value of 
A,). These matrices are symmetric and their inverses are computed through 
symmetric factorization. 

(2) Computational Cycle 

(a) Given the initial data (i.e., the initial conditions), a simple forward Euler 
time-stepping method with a considerably smaller time step size is used to obtain 
the second time level. The second-order Adams-Bashforth scheme is then used to 
obtain the third time level. 

(b) With the three time levels of the velocity field from the previous calcula- 
tion or from (a), the RHS of Eq. (20) can be evaluated to advance the velocity field 
to 07,: ’ . 

(c) The RHS of Eq. (23) is appropriately evaluated and the result is matrix- 
multiplied by the appropriate inverse of the eigenvectors. The solution of (P,),,, is 
then obtained from Eq. (25) by the static condensation technique [15, 171. The 
multiplication of (P,),,, by the _appropriate eigenvectors will yield P,(X,, Y,, Z; t); 
a divergence-free velocity field vn+ r is then computed from Eq. (22). 

(d) Using a similar procedure for the implementation of (c), the velocity field 
V ‘+I that satisfies the non-slip wall boundary condition is obtained via Eqs. (6) 
and (28). 

(e) The velocity field and the pressure field corresponding to the next time 
cycle is obtained by repeating steps (b) to (d). 

The computer code based on the above numerical algorithm has been designed 
to take advantage of the availability of the SSD-device on the Cray XMP at NASA 
Lewis. To illustrate this point, consider the case with a resolution of 33 Chebyshev 
terms for the Z-dependence and 100 subdomains with a 7 by 7 Chebyshev series 
interpolant in each of the subdomains that make up the computational domain on 
the X-Y plane. The use of the factorization (diagonalization) technique based on 
the tau-approximation for the Z-dependence reduces the 3-dimensionality of the 
pressure step and viscous correction step to a set of 31 two-dimensional problems. 
This fact together with the explicitness of the nonlinear convective step permits the 
implementation of each fractional step by solution of a 2-dimensional problem one 
at a time in the core memory, while the other 30 two-dimensional ones reside on the 
SSD-device. A brute force approach to a 3-dimensional Navier-Stokes solution 
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with such a resolution would easily exceed the core memory capacity of the Cray 
XMP. An alternative to the direct solution technique presented here is the use of 
the iterative technique [ 183, such as the preconditioned conjugate gradient method, 
which may demand more CPU time. 

I. Numerical Results 

In this section we present numerical results for 3-dimensional horseshoe vortex 
flow from the application of the computer code designed in accordance with the 
above numerical scheme. Results for struts of two different geometries are presented 
here: (1) a semi-infinite strut of thickness 1.0 with a semi-circular leading edge 
(Fig. lb), and (2) an elliptical strut with a ratio of major to minor axis of 6.0 
(Fig. lc). In all cases, the velocity profile at the inflow plane is such that V,= 0, 
I/, = (1 - Z*), Vz = 0. The shear in velocity at the endwalls afforded by V, can be 
thought of as representing the boundary layer in the approaching flow. 

Steady state results for strut (1) are obtained for Reynolds numbers from 50 to 
500. For these examples, the pitch is of 4.0 units and the inflow boundary is at a 
distance of 2.0 units (i.e., about two diameters) upstream of the strut (i.e., at 
Y = 0.0). The spatial resolution used for these calculations is 33 Chebyshev polyno- 
mial terms in the spanwise direction (i.e., Z-direction) and 32 subdomains on the 
X-Y plane, where in each subdomain the flow variables are spatially resolved using 
7 by 7 Chebyshev collocation points. The time step used for these calculations is 
0.0025. Typical residual history for the three velocity components is shown in 
Fig. 2; for the case of a Reynolds number of 300, it takes about 2000 time steps for 
the residual to decay to about lo-‘. Figures 3a to 3f show the vector plot of the 
velocity projection on a r-Z plane for 8 = 90” to 8 = 180” (Fig. lb), and on an X-Z 

IO0 

Time Step = 0.0025 

1000 
Time Step 

FIG. 2. Convergence history to steady state. 
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FIG. 3. Velocity projection on various r-z planes showing the evolution of vertical system for 
Re = 300. Each r-z plane extends from r = 0.5 (strut surface) to r = 0.75 and from z = - 1.0 (endwall 
surface) to z = -0.55: (a) at @= 90” plane; (b) at 0 = 135” plane; (c)at 0 = 157.5” plane; (d) at 180” 
plane (i.e., Y = 2.0); (e) at Y = 2.50 plane; (f) at Y = 2.75 plane (outflow plane). 

plane for Y = 2.00 to 2.75, which is the outflow boundary. These planes only extend 
from Z = - 1.0 (endwall) to Z = -0.55 and from r = 0.5 to 0.75 (or X= 0.5 to 0.75 
in Figs. 3e and f) so that the local details of the flow evolution from the leading 
edge plane to the outflow plane can better be elucidated. On the leading edge plane 
(i.e., 6’= 90” plane in Fig. 3a), the flow is downward in regions close to the strut 
surface; the flow direction is upstream away from the strut in the immediate vicinity 
of the endwall up to a radial location of about 0.61. A stagnant flow region appears 
around a radial location of 0.64. The flow direction is all downstream towards the 
strut upstream of radial location r = 0.67. The results in Figs. 3b and c are essentialy 
similar to that in Fig. 3a except that there appears to be an incipient formation of 
a corner vortex at the junction between the strut and the endwall. The flow features 
seen in Figs. 3a to c are due to the presence of a laminar horseshoe vortex formed 



HORSESHOE VORTEX FLOW COMPUTATION 145 

around the base of the strut accompanied by the separation of the approaching 
boundary layer flow. The formation of a corner vortex and its subsequent growth 
acts to displace the,horseshoe vortex away from the strut and endwall into the core 
flow (Fig. 3~). In particular, as seen in Fig. 3c, the corner vortex induces an upward 
flow along the strut surface (between Z = - 1.0 and -0.83), while the displaced 
core of the horseshoe vortex induces a downward flow along the strut surface. 

As one proceeds further downstream to the outflow boundary (i.e., Figs. 3d to f), 
the corner vortex grows in size with consequent displacement of the horseshoe 
vortex core (which appears quite diffused at about Y= 2.50) into the main flow. A 
closer look at Figs. 3e and f would lead one to deduce that the stagnant flow region 
referred to in Figs. 3a to d (as will be deduced from Fig. 7, this stagnant flow region 
must be in the immediate neighborhood of the line of separation) might have 
resulted in an additional endwall vortex; its sense of rotation is the same as the 
corner vortex but opposite to that of the horseshoe vortex. The results in Figs. 3e 
and f show that the flow in the endwall region is toward the strut from X= 0.75 to 
0.66, at which point it turns upward before proceeding in a direction away from the 
strut; this can essentially be attributed to the presence of an endwall vertical region 
as indicated in Fig. 3f. The existence of a corner vortex, a horseshoe vortex, and an 
endwall vortex is more clearly illustrated in Fig. 4. The computational result shown 
there is for the same flow configuration at 8 = 157.5” plane downstream from the 
leading edge, but at a lower Reynolds number of 150 (rather than 300). The 
endwall vortex appears earlier in this case. One could conceivably argue that the 
displacement and the movement of these vortices could be explained in terms of 
their induced flow field as well as that of their images. 

Such a vertical system has actually been observed in flow through a low speed 
experimental cascade rig for a turbine blade row [19, 20) representative of that 

L’ 1.0 

.  . . - . . .  - - - - - -de -  $ *  

2 L* - . - . . . . . . -CCCL --c_- 

Endwoll Vortex 

r= 1.16 

FIG. 4. The vertical system (looking upstream from a downstream station) for computational results 
at Re = 150 and at 0 = 157.5”. 
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Endwal I Surface 

::::e-....y< fffF : : : : : . . . . . 

r=0.5 Endwall Surface r=0.75 

FIG. 5. Velocity projection on various r-z planes indicating the evolution of vertical system for 
Re = 500. Each r-z plane extends from strut surface to outer boundary of computational domain and 
from endwall suface (z= - 1.0) to mid-span (z =O.O): (a) at 0 = 90” plane; (b) at 0 = 146.35” plane; 
(c) at 0 = 157.5” plane. (d) Enlarged view of Fig. 5b showing the vertical flow field in detail. 
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used in modern aero-engines. Such qualitative agreement is rather fortuituous as 
the numerical results are of a rather low Reynolds number (300) flow, while the 
experimental data pertains to a high Reynolds number flow in a situation that 
mimics a real technological device. 

The results for Reynolds number 500 are presented in Fig. 5, which shows the 
vector plot of velocity projection on the r-Z plane from 0 = 90” to 157.5”, and in 
Fig. 6 which shows the vector plot of the velocity projection on the X-Y plane at 
Z = -0.99 (i.e., the grid-plane adjacent to the endwall surface) and at Z = -0.98 
(i.e., the next grid-plane up). The vertical feature of the flow in Fig. 5 is essentially 
the same as that shown in Fig. 3. Figure 5d shows an enlarged view of Fig. 5b to 
bring out the vertical structure. In Fig. 6, a stagnation point of flow (Figs. 6a 
and b) (i.e., point of attachment) followed by a saddle point type of flow separation 
(Figs. 6c and d) upstream of the leading edge are evident [21]. The numerical 
results in Figs. 3 to 6 would lead one to deduce a limiting streamline pattern as 
shown in Fig. 7a on the endwall surface and in Fig. 7b on the surface of the circular 
leading edge of the strut [21]. 

In the course of obtaining these results, it was found that adequate resolution of 
the viscous layers at the endwalls and strut surface, as well as in the artificial 
boundary layer at the outflow boundary (due to the imposition of a simple 
extrapolation outflow boundary condition), is very critical to maintaining the 
stability of the numerical solution for a long time. Insufficient resolution in these 

(a) 

(b) (d) 

FIG. 6. Velocity projection on two planes adjacent to the endwall showing the topological features 
of the flow field: (a, b) indicate presence of a stagnation point flow, while (c, d) indicate presence of a 
saddle point of separation. 

581/85/l-10 
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I Leading Edge 

Ibl Midspan Z=O h Line Of Attachment 

! 

FIG. 7. Limiting streamline feature as deduced from the numerical results: (a) on the endwall 
surface; (b) on the surface of the circular leading edge of the strut. 

A Discontinuity Of 
Surface Curvoture 

,,,,,~~~Seporotion 

Endwol I 

FIG. 8. Sketch illustrating the presence of a thin separation zone as deduced from the numerical 
results. 
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layers results in oscillating behavior of the solution there which will then destroy 
the solution ultimately. Attempts were made to obtain a solution for a Reynolds 
number of 750 to 900 in this geometry, but with 60 to 80 subdomains for the X-Y 
dependence. However, in this range of Reynolds numbers, the computed results 
show that the flow at the endwall region separates at point A (Fig. 8) where there 
is a discontinuity in surface curvature. There is thus a thin separation zone at the 
corner between the strut and the endwall that stretches from point A to the outflow 
boundary as indicated in Fig. 8. Because of this, backflow occurs at the outflow 
boundary in this thin separation zone, and stable numerical solutions cannot be 
maintained for a very long time. 

In an attempt to ehminate the above-mentioned occurrence of the thin separation 
zone, semi-elliptical struts are adopted (i.e., geometry of type 2, see Fig. lc). There 

(0) 

(b) 

VW------ -  *- - -  

wfl’---- -  -  -  

(CJ 

fy / / , ”  -  -  -  -  -  c -  

q;i;. 1 y 1 ; -  -  -  -  -  
. -  -  .  _ __ 

.?,,.-a ,  .  _ _ ._ - ,  .  .  .  .  r=-I.0 

Endwall Surface 

FIG. 9. Velocity projection on r-z planes indicating the presence of a leading edge horseshoe vortex 
for an elliptical strut at Re = 650. Each r-z plane extends from the strut surface and from z = - 1.0 
(endwall surface) to z = -0.634: (a) at 0 = 90” plane; (b) at 8 = 90.5” plane; (c) at 0 = 91.75” plane. 
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FIG. 9-Continued. Velocity projection on z= constant planes: (d) midspan plane at z =O.O; 
(e) endwall plane at z = -0.99. 

is no discontinuity in surface curvature for this geometry. Solutions for Reynolds 
numbers of 400 and 650 were obtained. We show the results for a Reynolds number 
of 650. Figures 9a, b, c show the vector plots of the velocity on the r-Z plane at 
8 = 90” (leading edge plane), 90.5”, and 91.75”, while Figs. 9d, e show the velocity 
vector plot on two X-Y planes: one at midspan and the other close to the endwall. 
These results indicate the presence of a horseshoe vortex with the accompanying 
endwall boundary layer separation giving rise to a saddle point of separation. The 
next figure shows the streamwise vorticity distribution on a r-Z plane at various 
&locations. The streamwise vorticity ws is computed according to 

where 

As in the previous examples, downstream of the leading edge we observe the forma- 
tion of a corner vortex and an endwall vortex of the opposite sense to that of the 
horseshoe vortex. 

The static pressure coefficient C, (defined as C, = (P - P _ m)/p Ui, where P _ o. 
is the value far upstream) is shown in Figs. 11; Figs. lla and b show respectively 
the C, distribution on the endwall surface and on an X-Y plane near the mid-span, 
while Fig. llc shows the C, distribution on the surface of the elliptical strut. As one 
would expect, the presence of the strut has given rise to a region of adverse pressure 
gradient upstream of the strut which in turn leads to flow separation at the endwall 
region; this is also consistent with the presence of a horseshoe vortex near the lead- 
ing edge of the strut. In Fig. llc, the presence of a spanwise pressure gradient 
toward the endwall is consistent with the downward endwall flow caused by the 
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6.8 (, ,-Horseshoe Vortex 

5.3( I\ rHorseshoe Vortex 

,-Horseshoe Vortex 

FIG. 10. Development of streamwise vortices in the caSe of an elliptical strut with Re = 650: (a) at 
0 = 90” plane; (b) at 0 = 97” plane; (c) at 0 = 102” plane. r-rS = 0 is the strut surface. 

presence of the horseshoe vortex flow. The corresponding total pressure coeficient 
distribution at various locations in the flow domain are shown in Figs. 12a to c. 
These results indicate that, in the endwall flow region near the leading edge of the 
strut, the total pressure actually increases near the strut leading edge; in certain 
regions of the endwall flow, the increase in total pressure is not monotonous for the 
increase but is followed by a decrease in total pressure towards the strut surface. 
However, near the mid-span region, the fluid particle essentially maintains its total 
pressure level until in a region very close to the strut. The above observations in 
the numerical results are not surprising at all for the horseshoe vortex does not 
consist always of the same fluid but draws in fresh supplies constantly from the 
upstream core flow which is at a higher total pressure. 

To demonstrate the influence of the boundary conditions imposed at the outflow 
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2.4 

(b) 

FIG. 11. Static pressure distribution: (a) on endwall plane between inflow and strut leading edge; 
(b) at midspan plane between inflow and strut leading edge; (c) on surface of elliptical strut. Re = 650. 

boundary, we will now show the numerical results in the flow domains adjacent to 
the outflow boundary. The static pressure coefficient distribution at various con- 
stant Z planes is shown in Fig. 13, and the corresponding results for the vector plot 
of the velocity are shown in Fig. 14. Because of the imposition of a simple 
extrapolation outflow boundary condition, an artificial boundary layer forms at the 
outflow boundary [22]. In particular, one observed the presence of an adverse 
pressure gradient region (marked X in the figure) away from the strut. However, 
the fluid in the endwall region may have difficulty negotiating this adverse pressure 
gradient; in the present example, this results in a very slight reverse flow followed 
by velocity streaming towards the strut and then out of the computational domain. 
It appears that this adverse pressure gradient poses no problem at all to the 
numerical solution or the flow away from the endwall region as the results of 
Fig. 14 attest. 
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2.4 

6.0 

(b) 

-0.0006 
12.4 

FIG. 12. Total pressure distribution in the endwall region at .z= -0.83 in (a), at z= -0.77 in 
(b), and at midspan z = 0.0 in (c) for the case of elliptical strut with Re = 650. 

When the Reynolds number of the flow is increased to 1000 with the same spatial 
resolution as that for the Reynolds number of 650, the velocity at the outflow 
region (corresponding to where the adverse pressure gradient is) evolves, after 
about 100 times steps (each time step is 0.0025), to a state shown in Fig. 15; the 
velocity oscillates and alternates in direction even in a region far away from the 
endwall; the results in Fig. 15 pertain to that at midspan, and the result in the 
endwall region is worse. Examination of the numerical solution shows that the solu- 
tion in the leading region looks tine. Further time advancement leads to eventual 
breakdown of the numerical solution. However, when the spatial resolution is 
increased to 100 subdomains with resolution refinement in the outward direction 
from the strut (i.e., spatial resolution is refined in a direction normal to the flow at 
the outflow boundary), a stable solution for a Reynolds number of 1000 can be 
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Ilane) 

FIG. 13. Static pressure distribution on the subdomains preceding the outflow boundary indicating 
the presene of an adverse pressure gradient: (a) at z = - 1.0 (endwall); (b) at z = 0.0 (midspan). 

maintained to 1000 time steps. At this stage, the flow features are similar to the case 
of Re = 650. 

The current computer code takes about 0.3 x 10e3 s per time step per degree of 
freedom to implement on a Cray-XMP. It should also be mentioned that the code 
has not been fully vectorized nor optimized in terms of computer usage. Typically, 
with a resolution of 161,700” of freedom and with the use of a Cray solid-state 
storage device, it requires 1.5 MW of core memory for execution. 

8. CONCLUDING REMARKS 

The multi-domain spectral method is applied to the computation of a fairly com- 
plex 3-dimensional horseshoe vortex flow (laminar) at the strut-endwall junction 
representative of many engineering situations of interest. The numerical solutions at 
moderate Reynolds numbers show flow features associated with horseshoe vertical 
flow that have been observed in experiments. Flow dependence in the direction of 
the span of the strut is represented by a Chebyshev series while, on a plane normal 
to the strut, discretization by a spectral element scheme is adopted. Steady state 
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(b) 

FIG. 16. Velocity projection on an endwall plane and midspan plane preceding outflow boundary 
indicating a stable solution with increased spatial resolution (elliptical strut with Re = 1000): (a) at 
z=O.99; (b)z=O.O. 

solutions for Reynolds numbers of 50 to 650 are obtained. In the course of 
obtaining the above solutions, it was found that adequate resolution of the viscous 
layers at the endwalls and the strut surface, as well as the downstream artificial 
boundary layers (especially in the endwall region), due to the imposition of a 
simple extrapolation outflow boundary condition, are very critical to the stability 
of the numerical solution; for the present problem, not only should the downstream 
artificial boundary layer be well resolved spatially in the streamwise direction, but 
it must also be well resolved spatially in a direction normal to the streamwise flow; 
this is especially so in the endwall region. For the cases computed here, the presence 
of the downstream boundary layer arising from the imposed outflow boundary 
condition does not appear to contaminate the flow phenomena of interest in the 
leading edge region. 

It was also found that discontinuity in the surface curvature could lead to a 
separation zone with reverse flow at the corner between the strut and endwall that 
stretches out to the outflow boundary. In this case, further refinement of the spatial 
resolution at the outflow boundary does not appear to help in stabilizing the solu- 
tion. A different kind of outflow boundary condition (e.g., advective type) other 
than the simple extrapolation type used here may help. As the Reynolds number of 
the flow increases, a numerical solution for the present problem can only be 
attained with difficulty. The present examples suggest that the principal difficulty is 
at the outflow boundary. It may be possible to alleviate this difficulty by locally 
enhancing the fluid viscosity in the vicinity of the outflow boundary [22], in this 
case, a different solution algorithm from that used here would have to be adopted. 
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APPENDIX 

The gradient operator V operating on a scalar f yields 

where J is the Jacobian of the geometrical mapping between (X, Y, Z) and (5, ye, Z), 
and V,, is given as 

(A21 

The operator V 2. is constructed following Ref. [15]. Thus the semi-discrete (V’), 
can be written as 

(W )jk =$ F 
Jkp=O q=O 

+ p$o q$o g hP(tji)hq(qk)cZ, 

where VjkP4 is given by [ 151 

643) 

(A4) 

The discrete differential operator Djp on the Chebyshev collocation grid within each 
subdomain is simply given by [l5] 

(A51 

where a,,, is the Kronecker delta function; the subscripts X, Y, and Z have been 
used to denote the component in the X, Y, and Z direction, respectively; (xjk, Yjk) 
denotes collocation points corresponding to tj = cos njJNx and ylk = cos nk/N,; 
quantities like BjIP, BP+, and Bjkl,,, are given as [IS] 

Bjlp = +’ hj(i)h,(i)hp(i) 4 
-1 
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